Reaction kinetics of Components of Ex-Situ Slow Pyrolysis of Spirulina platensis Residue with Silica-alumina Catalyst Through 5-Lump Model
Abstract
Pyrolysis Spirulina platensis residue (SPR) processing/produces tar, char, and gas products. Tar upgrading with a catalyst is carried out to reduce the oxygenate content in the tar. The reaction kinetics of oxygenate compounds in tar to form aliphatic, aromatic, oxygenate, and coke and gas compounds must be calculated. The calculation determines the reaction rate constant (k) and activation energy (E) value. This paper discusses the catalytic kinetic components of ex-situ slow pyrolysis of Spirulina platensis residue with silica-alumina via a 5-lump model. Values of k and E can predict the predominance of product compound formation tendencies and are required for industrial design. A fixed-bed reactor with a silica-alumina catalyst operates with a temperature range of 300–600 °C, the thickness of the catalyst in the reactor R2 is 0–4.5 cm, and the heating rate is 5–35°C/min. The reactor consists of two (2) vertical cylinders, reactor R1 contains the SPR, and reactor R2 is filled with the catalyst. Based on experimental data, the decomposition of oxygenating products into aliphatic products is more dominant than the decomposition of aliphatic and aromatic compounds into other products. The dominance of aliphatic formation is indicated by the lowest activation energy value (0.07 kJ/mol) occurring in the k6 reaction (11.779-11.835 sec.-1), i.e., the oxygenate product becomes aliphatic. The lowest E value indicates oxygenate compounds are more easily decomposed than aromatic and aliphatic compounds. The product oxygenates, aliphatic, aromatic, coke, and gas compounds increased with increasing catalyst thickness; on the other hand, the pyrolysis feed oxygenate compound decreased sharply.
Keywords
Full Text:
PDFReferences
G. Kumar et al., “A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes,” Green Chem., vol. 19, pp. 44–67, 2017, DOI: https://doi.org/10.1039/C6GC01937D.
A. Aho et al., “Pyrolysis of pine and gasification of pine chars – Influence of organically bound metals,” Bioresour. Technol., vol. 128, pp. 22–29, 2013, DOI: https://doi.org/10.1016/j.biortech.2012.10.093.
Y. L. Tan, A. Z. Abdullah, and B. H. Hameed, “Product distribution of the thermal and catalytic fast pyrolysis of Karanja (Pongamia pinnata) fruit hulls over a reusable silica-alumina catalyst,” Fuel, vol. 245, pp. 89–95, 2019, DOI: https://doi.org/10.1016/j.fuel.2019.02.028.
S. P. Jeevan Kumar, V. K. Garlapati, A. Dash, P. Scholz, and R. Banerjee, “Sustainable green solvents and techniques for lipid extraction from microalgae: A review,” Algal Res., vol. 21, pp. 138–147, 2017, DOI: https://doi.org/10.1016/j.algal.2016.11.014.
T. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters,” Renew. Sustain. Energy Rev., vol. 57, pp. 1126–1140, 2016, DOI: https://doi.org/10.1016/j.rser.2015.12.185.
G. Kabir and B. H. Hameed, “Recent progress on catalytic pyrolysis of lignocellulosic biomass to highgrade bio-oil and bio-chemicals,” Renew. Sustain. Energy Rev., vol. 70, pp. 945–967, 2017, DOI: https://doi.org/10.1016/j.rser.2016.12.001.
S. Jamilatun, Budhijanto, Rochmadi, J. I. Hayashi, and A. Budiman, “Catalytic pyrolysis of Spirulina platensis residue (SPR): Thermochemical behavior and kinetics,” Int. J. Technol., vol. 11, no. 3, 2020, DOI: https://doi.org/10.14716/ijtech.v11i3.2967.
X. Hu and M. Gholizadeh, “Biomass pyrolysis: A review of the process development and challenges from initial research up to the commercialization stage," J. Energy Chem., vol. 39, pp. 109–143, 2019, DOI: https://doi.org/10.1016/j.jechem.2019.01.024.
S. Jamilatun, Budhijanto, Rochmadi, and A. Budiman, “Non?catalytic slow pyrolysis of Spirulina platensis residue for liquid biofuel production," Int. J. Renew. Energy Res., vol. 7, no. 4, 2017, DOI: https://doi.org/10.20508/ijrer.v7i4.6305.g7233.
S. Jamilatun, A. Budiman, H. Anggorowati, A. Yuliestyan, Y. Surya Pradana, and Budhijanto, “Ex-Situ Catalytic Upgrading of Spirulina platensis residue Oil Using Silica Alumina Catalyst,” Int. J. Renew. Energy Res., vol. 9, no. 4, 2019, DOI: https://doi.org/10.20508/ijrer.v9i4.10119.g7776.
S. Jafarian and A. Tavasoli, "A comparative study on the quality of bioproducts derived from catalytic pyrolysis of green microalgae Spirulina (Arthrospira) platensis over transition metals supported on HMS-ZSM5 composite,” Int. J. Hydrogen Energy, vol. 43, pp. 1–16, 2018, DOI: http://dx.doi.org/10.1016/j.ijhydene.2018.08.171.
S. Jamilatun, Budhijanto, Rochmadi, and A. Budiman, “Thermal Decomposition and Kinetic Studies of Pyrolysis of Spirulina platensis Residue,” Int. J. Renew. Energy Dev., vol. 6, no. 3, pp. 193–201, 2017, DOI: https://doi.org/10.14710/ijred.6.3.193-201.
S. J. Ojolo, C. A. Oshekub, and M. G. Sobamowoa, “Analytical investigations of kinetic and heat transfer in slow pyrolysis of a biomass particle,” Int. J. Renew. Energy Dev., vol. 2, no. 2, pp. 105–115, 2013, DOI: https://doi.org/10.14710/ijred.2.2.105-115.
H. Shafaghat et al., “In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer,” J. Ind. Eng. Chem., vol. 54, pp. 447–453, 2017, DOI: https://doi.org/10.1016/j.jiec.2017.06.026.
M. Hu et al., “Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria,” Bioresour. Technol., vol. 177, pp. 41–50, 2015, DOI: https://doi.org/10.1016/j.biortech.2014.11.061.
S. Jamilatun, A. Aktawan, A. Budiman, and I. Mufandi, “Thermogravimetric analysis kinetic study of Spirulina platensis residue pyrolysis,” IOP Conf. Ser. Earth Environ. Sci., vol. 963, p. 012010, 2022, DOI: https://doi.org/10.1088/1755-1315/963/1/012010.
A. V Bridgwater, “Renewable Fuels and Chemicals by Thermal Processing of Biomass,” Chem. Eng. J., vol. 91, no. 2–3, pp. 87–102, 2003, DOI: https://doi.org/10.1016/S1385-8947(02)00142-0.
Y. L. Tan, A. Z. Abdullah, and B. H. Hameed, “Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: Effects of pyrolysis parameters,” Bioresour. Technol., vol. 264, pp. 198–205, 2018, DOI: https://doi.org/10.1016/j.biortech.2018.05.058.
S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, 2017, DOI: https://doi.org/10.1016/j.pecs.2017.05.004.
V. Anand, V. Sunjeev, and R. Vinu, “Catalytic fast pyrolysis of Arthrospira platensis (spirulina) algae using Zeolites,” J. Anal. Appl. Pyrolysis, vol. 118, pp. 298–307, 2016, DOI: https://doi.org/10.1016/j.jaap.2016.02.013.
T. Fisher, M. Hajaligol, B. Waymack, and D. Kellog, “Pyrolysis Behaviour and Kinetics of Biomass Derived Materials,” J. Anal. Appl. Pyrolysis, vol. 62, no. 2, pp. 331–349, 2002, DOI: https://doi.org/10.1016/S0165-2370(01)00129-2.
A. Anca-Couce, “Reaction mechanisms and multi-scale modeling of lignocellulosic biomass pyrolysis,” Prog. Energy Combust. Sci., vol. 53, pp. 41–79, 2016, DOI: https://doi.org/10.1016/j.pecs.2015.10.002.
N. Prakash and T. Karunanithi, “Kinetic modeling in biomass pyrolysis – A Review,” J. Appl. Sci. Res., vol. 4, no. 12, pp. 1627–1636, 2008.
Q.-V. Bach and W. . Chen, “Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review,” Bioresour. Technol., vol. 246, pp. 88–100, 2017, DOI: https://doi.org/10.1016/j.biortech.2017.06.087.
B. Dou, W. Pan, J. Ren, B. Chen, J. Hwang, and T. Yu, "Removal of tar component over cracking catalysts from high-temperature fuel gas," Energy Convers. Manag., vol. 49, no. 8, pp. 2247–2253, 2008, DOI: http://dx.doi.org/10.1016/j.enconman.2008.01.027.
Z. A. El-Rub, E. A. Bramer, and G. Brem, “Experimental comparison of biomass chars with other catalyst for tar reduction,” Fuel, vol. 87, no. 10–11, pp. 2243–2252, 2008, DOI: https://doi.org/10.1016/j.fuel.2008.01.004.
A. Juneja, S. Mani, and J. Kastner, “Catalytic cracking of tar using biochar as a catalyst,” in 2010 ASABE Annual International Meeting, 2010, p. 13, DOI: http://dx.doi.org/10.13031/2013.30003.
D. F. Cano, A. G. Barea, S. Nilsson, and P. Ollero, “Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification,” Chem. Eng. J., vol. 228, pp. 1223–1233, 2013, DOI: https://doi.org/10.1016/j.cej.2013.03.130.
H. S. Fogler, Element of Chemical Reaction Engineering, 3rd ed. Prentice-Hall International, Inc, 2006.
O. Levenspiel, Chemical Reaction Engineering, 3rd ed. New York: John Wiley & Sons, Inc, 1999.
C. Yang et al., “Pyrolysis of microalgae: A critical review,” Fuel Process. Technol., vol. 186, pp. 53–72, 2019, DOI: https://doi.org/10.1016/j.fuproc.2018.12.012.
Sunarno, Rochmadi, P. Mulyono, M. Aziz,c and A. Budiman, "Kinetic Study of Catalytic Cracking of Bio-oil over Silica- alumina Catalyst," BioResources, vol. 13(1), pp. 1917-1929. 2018.
S. Jamilatun, Budhijanto, Rochmadi, A. Yuliestyan, and A. Budiman, Comparative Analysis Between Pyrolysis Products of Spirulina platensis Biomass and Its Residues, Int. J. Renew. Energy Dev., 8 (2) (2019), 113 – 140.
DOI (PDF): https://doi.org/10.20508/ijrer.v12i3.13159.g8533
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4