Performance Comparison of the Standard Photovoltaic Thermal Collector (PVT) and Photovoltaic Thermal Collector with Phase Change Materials (PVT-PCM)
Abstract
Keywords
Full Text:
PDFReferences
W. E., Ewe, F.,Ahmad. K., Sopian, and A., Nilofar, “Modeling of bifacial photovoltaic-thermal (PVT) air heater with jet plate,” Int. J. Heat Technol., vol. 39, no. 4, pp. 1117–1122, Aug. 2021, doi: 10.18280/ijht.390409.
W. E., Ewe, F., Ahmad, Sopian, K., M., Refat, A., Nilofar, N., Wahidin, and Ibrahim., A, “Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector,” Energy, vol. 254, p. 124366, 2022, doi: 10.1016/j.energy.2022.124366.
W. E., Ewe, F., Ahmad. Sopian., K, A., Nilofar. A., Yoyon, and S., Agus, “Overview on Recent PVT Systems with Jet Impingement,” Int. J. Heat Technol., vol. 39, no. 6, pp. 1951–1956, 2021, doi: 10.18280/ijht.390633.
M. A. M., Rosli, J. P., Yap, M., Suhaimi, Z. A., Mohd, Sopian., K, M., Sohif, N. A., Ali, and A. S., Muhammad, “Simulation study of computational fluid dynamics on photovoltaic thermal water collector with different designs of absorber tube,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 52, no. 1, pp. 12–22, 2018.
N., Katsumata, N., Yasuhito, M., Takashi, and T., Hideyuki, “Estimation of irradiance and outdoor performance of photovoltaic modules by meteorological data,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 1, pp. 199–202, 2011, doi: 10.1016/j.solmat.2010.01.019.
E., Aç?kkalp, C., Hakan, H., Hiki, P., Hongjie, and S., Dohyun, “Extended exergy analysis of a photovoltaic-thermal (PVT) module based desiccant air cooling system for buildings,” Appl. Energy, vol. 323, no. February, p. 119581, 2022,
doi: 10.1016/j.apenergy.2022.119581.
M., Herrando, N. M., Christos, and H., Klaus, “A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance,” Appl. Energy, vol. 122, pp. 288–309, 2014, doi: 10.1016/j.apenergy.2014.01.061.
N., Aste, L., Fabrizio, and D. P., Claudio, “Design, modeling and performance monitoring of a photovoltaic-thermal (PVT) water collector,” Sol. Energy, vol. 112, pp. 85–99, 2015, doi: 10.1016/j.solener.2014.11.025.
M. A. A. B., Ishak, “Performance of A Reversed Circular Flow Jet Impingement Bifacial PVT Solar Collector,” Thesis, Univ. Kebangs. Malaysia, 2023.
M. A. A. B., Ishak, Ibrahim., A, K., Sopian, F. F., Mohd. M. A. A., Rahmat, and N. J., Yusaidi, “Performance and Economic Analysis of a Reversed Circular Flow Jet Impingement Bifacial PVT Solar Collector,” Int. J. Renew. Energy Dev., vol. 12, no. 4, pp. 780–788, 2023, doi: https://doi.org/10.14710/ijred.2023.54348.
M. A. A. B., Ishak, A., Ibrahim, K., Sopian, F. F., Mohd. M. A. A., Rahmat, and A. S. A., Hamid, “Heat Transfer Performance of a Novel Circular Flow Jet Impingement Bifacial Photovoltaic Thermal PVT Solar Collector,” vol. 13, no. 2, 2023, doi: https://doi.org/10.20508/ijrer.v13i2.13886.g8756.
V., Delisle, and K., Michaël, “Cost-benefit analysis of integrating BIPV-T air systems into energy-efficient homes,” Sol. Energy, vol. 136, pp. 385–400, 2016, doi: 10.1016/j.solener.2016.07.005.
A., Ibrahim, O., Mohd, Y. H. R., Mohd, M., Sohif, and K., Sopian, “Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 352–365, 2011, doi: 10.1016/j.rser.2010.09.024.
Syazwan, M. B. A., A., Ibrahim, M. A. A. B., Ishak, “Energy performance evaluation of a photovoltaic thermal phase change material ( PVT-PCM ) using a spiral flow configuration,” no. xx, 2022.
M. A. A., Rahmat, A. S. A., Hamid, L., Yuanshen. M. A. A. B., Ishak, Z. S., Shaikh, F., Ahmad. and A. Ibrahim, “An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro,” Sustain., vol. 14, no. 20, 2022, doi: 10.3390/su142013684.
M. A. A. B., Ishak, A., Ibrahim, F., Ahmad. F. F., Mohd, K., Sopian, and M. A. A., Rahmat, “Exergy performance of a reversed circular flow jet impingement bifacial photovoltaic thermal (PVT) solar collector,” Case Stud. Therm. Eng., vol. 49, 2023, doi: 10.1016/j.csite.2023.103322.
A., Ibrahim, K., Sopian, Y. O., Mohd, and Z., Azami, “Simulation of different configuration of hybrid Photovoltaic Thermal Solar Collector (PVTS) Designs,” 2008. [Online]. Available: https://api.semanticscholar.org/CorpusID:55995653
M. A. A. B., Ishak, A., Ibrahim, K., Sopian, F. F., Mohd, M. A. A., Rahmat, and A. S. A., Hamid, “Classification of Jet Impingement Solar Collectors – A Recent Development in Solar Energy Technology,” Int. J. Renew. Energy Res., vol. 13, no. 2, pp. 802–817, 2023, doi: https://doi.org/10.20508/ijrer.v13i2.13884.g8755.
A. H. A., Al-Waeli, K., Sopian, T. C., Miqdam, A. K., Hussein, A. H., Husam, and N. A., Ali, “An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system,” Energy Convers. Manag., vol. 142, pp. 547–558, 2017, doi: https://doi.org/10.1016/j.enconman.2017.03.076.
A., Ibrahim, M. Y., Othman, M. H1., Ruslan, M. A., Alghoul, M., Yahya, A., Zaharim, and K., Sopian, “Performance of photovoltaic thermal collector (PVT) with different absorbers design,” WSEAS Trans. Environ. Dev., vol. 5, no. 3, pp. 321–330, 2009.
A., Ibrahim, L. J., Goh, D., Roonak, H. M. S., Mohd, Y. O., Mohd, H. R., Mohd, M., Sohif, and K., Sopian, “Hybrid Photovoltaic Thermal (PV/T) Air and Water Based Solar Collectors Suitable for Building Integrated Applications,” Am. J. Environ. Sci., vol. 5, no. 5, pp. 618–624, Oct. 2009, doi: 10.3844/ajessp.2009.618.624.
J. C., Franklin, and M., Chandrasekar, “Performance enhancement of a single pass solar photovoltaic thermal system using staves in the trailing portion of the air channel,” Renew. Energy, vol. 135, pp. 248–258, 2019, doi: 10.1016/j.renene.2018.12.004.
T., Mihai, N., Covalenco, D., Zaitsev, I., Negura, M., Gavrilas, and B. C., Neagu, “Photovoltaic-Thermal System for Trigenerating Electricity, Hot Water and Cold,” in 2021 International Conference on Electromechanical and Energy Systems (SIELMEN), 2021, pp. 92–96. doi: 10.1109/SIELMEN53755.2021.9600378.
B., M, E., Minciuc, D. C., Frusescu, and D. Tutica, “Integration of Hybrid Photovoltaic Thermal Panels (PVT) in the District Heating System of Bucharest, Romania,” in 2021 10th International Conference on ENERGY and ENVIRONMENT (CIEM), 2021, pp. 1–5. doi: 10.1109/CIEM52821.2021.9614721.
H., Samir, R., Saidur, S., Mekhilef, and R. A., Taylor, “Environmental and exergy benefit of nanofluid-based hybrid PV/T systems,” Energy Convers. Manag., vol. 123, pp. 431–444, 2016, doi: https://doi.org/10.1016/j.enconman.2016.06.061.
K. S., Muthukarupan, E. S., Santhosh V., Subramanian, S., Tiwari, and D. B., Singh, “Performance improvement of PVT module with applications of nano-fluids and phase change materials: A review,” in 2020 International Conference on Electrical and Electronics Engineering (ICE3), 2020, pp. 767–772. doi: 10.1109/ICE348803.2020.9122832.
G., Ankita, C., Ménézo, and S., Giroux--Julien, “Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium,” Renew. Energy, vol. 109, pp. 168–187, 2017, doi: https://doi.org/10.1016/j.renene.2017.01.062.
H., Fayaz, N. A., R. M., Hasanuzzaman, R., Nasrin, and A., Rivai, “Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM,” Renew. Energy, vol. 143, pp. 827–841, 2019, doi: https://doi.org/10.1016/j.renene.2019.05.041.
K., Sylevaster and E., Cetkin, “Photovoltaic System Efficiency Enhancement with Thermal Management: Phase Changing Materials (PCM) with High Conductivity Inserts,” Int. J. Smart grid, vol. 5, no. 4, pp. 138–148, 2021, doi: 10.20508/ijsmartgrid.v5i4.218.g171.
H. A., Kazem, A. H. A., Al-Waeli, T., Miqdamm C., Karrar, H., Al-Waeli, A. B., Al-Aasam, and K., Sopian, “Evaluation and comparison of different flow configurations PVT systems in Oman: A numerical and experimental investigation,” Sol. Energy, vol. 208, no. February, pp. 58–88, 2020, doi: 10.1016/j.solener.2020.07.078.
A. H. A., Al-Waeli, K., Sopian, A. K., Hussein, and T., Miqdam, “Evaluation of the electrical performance of a photovoltaic thermal system using nano-enhanced paraffin and nanofluids,” Case Stud. Therm. Eng., vol. 21, p. 100678, 2020, doi: https://doi.org/10.1016/j.csite.2020.100678.
S., Bayu, and Y. S., Indartono, “Computational fluid dynamic (CFD) modelling of floating photovoltaic cooling system with loop thermosiphon,” AIP Conf. Proc., vol. 2062, no. 1, p. 20011, 2019, doi: 10.1063/1.5086558.
F., Wenke, G., Kokogiannakis, and Z., Ma, “Optimisation of life cycle performance of a double-pass photovoltaic thermal-solar air heater with heat pipes,” Renew. Energy, vol. 138, pp. 90–105, 2019, doi: 10.1016/j.renene.2019.01.078.
R. K., Ajeel, W. S. I., Salim, K., Sopian, M. Z., Yusoff, K., Hasnan, A. Ibrahim, and A. H. A., Al-Waeli, “Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study,” Int. J. Heat Mass Transf., vol. 145, p. 118806, 2019, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118806.
A., Ibrahim, F., Ahmad, Sopian., K. Y. O., Mohd, and H. R., Mohd, “Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system,” Energy Convers. Manag., vol. 77, pp. 527–534, 2014, doi: https://doi.org/10.1016/j.enconman.2013.10.033.
A., Jalal, K., Sopian, A., Ibrahim, A., Fudholi, N., Fatima, Ali H. A. Al-Waeli, and Ag Sufiyan Abd Hamid, “Thermal and Thermo-hydraulic Performance of Finned Double-Pass Solar Air Collector Utilizing Cylindrical Capsules Nano-Enhanced PCM,” Int. J. Renew. Energy Res., vol. 13, no. 1, pp. 125–135, 2023, doi: 10.20508/ijrer.v13i1.13880.g8668.
H., Xinyue, X., Zhao, and X., Chen, “Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling,” Renew. Energy, vol. 162, pp. 55–70, 2020, doi: 10.1016/j.renene.2020.07.131.
I. A., Fahmi, A. S. A., Hamid, A. Ibrahim, Hasila, J., and K., Sopian, “Performance Analysis of a Double Pass Solar Air Thermal Collector with Porous Media Using Lava Rock,” Energies, vol. 15, no. 3, 2022, doi: 10.3390/en15030905.
A. H. A., Al-Waeli, T. C., Miqdam, K., Sopian, H. A., Kazem, H. B., Mahood, and A. A., Khadom, “Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM,” Sol. Energy, vol. 177, pp. 178–191, 2019, doi: https://doi.org/10.1016/j.solener.2018.11.016.
D., Swapnil, J. N., Sarvaiya, and B., Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia, vol. 33, pp. 311–321, 2013, doi: https://doi.org/10.1016/j.egypro.2013.05.072.
K., Sopian, A. H. A. Al-Waeli, and H. A., Kazem, “Energy, exergy and efficiency of four photovoltaic thermal collectors with different energy storage material,” J. Energy Storage, vol. 29, p. 101245, 2020, doi: https://doi.org/10.1016/j.est.2020.101245.
DOI (PDF): https://doi.org/10.20508/ijrer.v13i4.13887.g8830
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4