Effect of Temperature on the GaInP/GaAs Tandem Solar Cell Performances

Abderrezek Mahfoud, Fathi mohamed, Saad Mekhilef, Farid Djahli

Abstract


GaInP and GaAs being promising materials for large scale photovoltaic applications, the effect of temperature on the electrical parameters of a GaInP/GaAs tandem solar cell has been investigated in this paper. The top GaInP and the bottom GaAs tandem cells were separately simulated using the one dimensional solar simulator SCAPS-1D. The temperature dependency of the solar cell’s characteristics was investigated in the temperature range from 25 to 80°C. The simulation results show that voltage losses within the tandem cell are additive (Top cell and Bottom cell), while the short circuit current density depends smoothly on temperature, and the efficiency reduction is about (-0.038), (- 0.035) and  (- 0.054 % / °C) for the bottom, top and tandem cells respectively. The matching current becomes dependent on the top cell, since this last has smaller variation compared with the bottom cell.


Keywords


SCAPS-1D; Solar cell; Temperature; Tandem; GaInP/GaAs.

Full Text:

PDF

References


M. Bosi, C. Pelosi, “The Potential of III-V Semiconductors as Terrestrial Photovoltaic Devicesâ€, Prog. Photovolt: Res. Appl, vol. 15, pp. 51-68, 2007.

Thomas P. White, Niraj N. Lal, Kylie R. Catchpole, “Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiencyâ€, IEEE Journal of Photovoltaics, vol. 4, pp. 208-214, 2014.

J.C.C. Fan, “Theoretical temperature dependence of solar cell parametersâ€, Solar Cells, vol. 17, pp. 309-315, 1986.

H. Helmers, M. Schachtner, Andreas W. Bett, “Influence of temperature and irradiance on Triple-junction solar subcellsâ€, Solar Energy Materials & Solar Cells, vol. 116, pp. 144-152, 2013.

E. F. Femandez, G. Siefer, M. Schachtner, A. J. Garia, Loureiro, P. Perez Higueras, “Temperature

Coefficients of Monolithic III-V Triple Junction Solar Cells under Different Spectra and Irradiance Levelsâ€, AIP Conference Proceeding, pp.189-193, 2012.

M.Y. Feteha, G.M. Eldallal, “The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cell’s performanceâ€, Renewable Energy, vol. 28, pp.1097-1104, 2003.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cellsâ€, Journal of Applied Physics. vol. 32, pp. 510-519, 1961.

R. Pode and B. Diouf, Solar Lighting, Springer-Verlag London Limited, 2011.

C.D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in

Ge, Si, GaAs and GaPâ€, J. Electrochem. Soc, vol. 122, pp.1133-1141, 1975.

A. Mc. Evoy, T. Markvart and L. Castaner, Practical Handbook of Photovoltaics Fundamentals and Applications, Second Edition, Elsevier Ltd, 2012.

P. Basmaji, M. Guittard, A. Rudra, J.F. Carlin and P. Gibart, “GaAs tunnel junction grown by metalorganic vapor-phase epitaxy for multigap cascade Solar cellsâ€, Journal of Applied Physics, vol. 62, pp. 2103-2106, 1987.

K. J. Singh, S. K. Sarkar, “Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling

using optimized InAlGaP BSF layersâ€, Springer Opt. Quant. Electron, vol. 43, pp. 1-21, 2011.

http://www.ioffe.ru/SVA.

M. Y. Ghannam, A. S. Alomar, N. Posthuma, G. Flammad and J. Poorthmans, “Optimization of the

triple junction In0.5Ga0.5P/ GaAs/Ge monolithic tandem cell aimed for terrestrial applications using an experimentally verified analytical modelâ€, Kuwait Journal of Science and Engineering, vol. 31, pp. 203-234, 2004.

A.S. Gudovskikh, N.A. Kaluzhniy, V.M. Lantratov, S.A. Mintairov, M.Z. Shvarts, V.M. Andreev, “Numerical modeling of GaInP solar cells with AlInP and AlGaAs windowsâ€, Thin Solid Films, vol. 516, pp. 6739-6743, 2008.

T. Takamoto, E. Ikeda, H. Kurita and M. Ohmori, “High efficiency InGaP solar cells for InGaP/GaAs Tandem cell applicationâ€, Proceedings of the First world conference on photovoltaic energy conversion, Hawaii, vol. 2, pp. 1729-1732, 1994.

A. Niemegeers and M. Burgelman, “Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cellsâ€, Journal of Applied Physics, vol. 81, Article ID 2881, 1997.

Y. A. Goldberg, Handbook Series on Semiconductor Parameters, vol. 2. World Scientific, London,

B. Streetman and S. Banerjee, Solid State Electronic Devices, vol. 2. Prentice-Hall, New Jersey,

L. Fraas, L. Partain, Solar cells and their applications, Second Edition, John Wiley & Sons, Inc,

C. John and C. Fan, “Theoretical temperature dependence of solar cell parametersâ€, Solar Cells, vol. 17, pp. 309-315, 1986.

M. Green, “General temperature dependence of solar cell performance and implications for device modelingâ€, in Progress in Photovoltaics: Research and Applications, vol. 11, pp. 333-340, 2003.

M. Green, Solar Cells: operating Principles, Technology and System application, Prentice- Hall, Englewood Cliffs, NJ, 1-12, 1982, ch. 1.

J. M. Olson, D. J. Friedman and S. Kurtz, High Efficiency III-V Multijunction Solar Cells,

Handbook of Photovoltaic Science and Engineering. John Wiley & Sons, 2003.

D. Friedman, “Modeling of tandem cell temperature coefficientsâ€, Proc. 25th IEEE Photovoltaic Specialists Conference, pp. 89-92, 1996.

D.J. Friedman, S.R. Kurtz, K. Sinha, W.E.Mc Mahon, J.M. Olson, J.B. Lasich, A.X. Cleeve, and I. Connaughton, “On-sun concentrator performance of GalnP/GaAs tandem cellsâ€, Proc. 25th IEEE

Photovoltaic Specialists Conference, pp. 73-75, 1996.




DOI (PDF): https://doi.org/10.20508/ijrer.v5i2.2262.g6618

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4