An Improved Feed Forward PWM Control for MPPT of Solar PV Systems Under Varying Atmospheric Conditions
Abstract
The objective of this paper is to harvest maximum power from the solar panel using voltage based MPPT circuit for low power application under varying atmospheric conditions. A voltage based tracking system consisting of a voltage sensor, DC-DC boost converter, maximum power point tracker and a LED lighting load is designed and developed. The analog MPPT controller using direct feed forward PWM control signal for DC-DC converter operated in the continuous conduction mode is the principle block performing the tracking operation. Since the output of solar panel is nonlinear, the optimal power point will vary due to change in irradiance and temperature. Irrespective of the change in atmospheric conditions, the voltage sensor developed here has the ability to generate accurate reference voltage in accordance with the panel output and thereby maintains maximum power at the load. The experimental results have proved a power conversion efficiency of 95.46 % in clear sky condition, and (90.49 to 93.78) % in partial shading conditions resulting from the feed forward control technique employed in the MPPT circuit. The proposed tracking system is less complex and low cost one that has high tracking efficiency with less fluctuation in real time dynamic conditions.Â
Keywords
Full Text:
PDFReferences
J.C.H. Phang, D.S.H. Chan, J.R. Philips, “Accurate analytical method for the extraction of solar cellâ€, Electron. Lett. vol.20, no.10, pp.406-408, 1984.
M.A.Hamdy, “A new model for the current – voltage output characteristics of photovoltaic modules†J. Power Sources vol.1, pp.11-20, 1994.
K. Nishioka, et al., “Analysis of the temperature characteristics in polycrystalline Si solar cell using modified equivalent circuit modelâ€, J. Appl. Phys., vol.42, no.12, pp.7175-7179, 2003.
S.A. Ibrahim, et al., “Microcomputer controlled buck regulator for maximum power point tracker for DC pumping system operates from photovoltaic systemâ€, Fuzzy Systems Conf. Proc. FUZZIEEE’99, International 1 September 22-25, pp.406-411, 1999.
M.A.S. Masoum, H. Dehbonei, E.F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current – based maximum power –point trackingâ€, IEEE Trans. Energy Convers. Vol.17, no.4, pp.514-522 , 2002.
Z. Salameh, F. Dagher, W.Lynch, “Step – down maximum power point tracker for photovoltaic systemsâ€, Solar Energy, vol.46, no.5, pp.279-282, 1991.
N. Femia, G. Petrone, G. Spagnuolo, M. Viteli, “Optimization of Perturb and Observe Maximum Point Tracking Methodâ€, IEEE Trans. Power Electron. Vol.20, no.4, pp.963-973, 2005.
B.M.T. Ho, H.S.H. Chung, W.L. Lo, “Use of System Oscillation to locate the MPP of PV panelsâ€, IEEE Trans. Power Electron. Lett. Vol.2, no.1, pp.1-5, 2004.
F. Liu, S. Duan, F. Liu, B. Liu, Y. Kang, “A variable step size INC MPPT method for PV systemsâ€, IEEE Trans. Indus. Electron. Vol.55, no.7, pp. 2622-2628, 2008.
T. Hiyama, et al., “Identification of optimal operation point of PV modules using neural network for real time maximum power tracking controlâ€, IEEE Trans. Energy Convers vol.10, pp.360-367, 1995.
M. Veerachary , T. Senjyu , K. Uezato , “Neural network based maximum power point tracking of coupled inductor interleaved boost converter supplied PV system using fuzzy controllerâ€, IEEE Trans. Ind. Electron. Vol.50, no.4, pp.749-758, 2003.
N. Patcharaprakiti , S. Premrudeepreechacharn , Y. Sriuthaisiriwong , “Maximum power point tracking using adaptive fuzzy logic control for grid – connected photovoltaic systemâ€, Renew. Energy, vol.30, no.11, pp.1771-1788, 2005.
B. N. Alajmi , K. H. Ahmed , S. J. Finney, B.W. Williams, “Fuzzy logic control approach of a modified hill –climbing method for maximum power point in micro-grid standalone photovoltaic systemâ€, IEEE Trans. Power Electron. Vol.26, no.4, pp.1022-1030, 2011.
M. R. Vincheh , A. Kargar, G. A. Markadeh, “A Hybrid Control Method for maximum power point tracking (MPPT) for Photovoltaic Systemsâ€, Arab. J. SCi. Eng., vol.39, pp. 4715-4725, 2014.
M.A. Abido, M. Sheraz Khalid, M.Y. Worku, “An efficienct ANFIS based PI controller for Maximum power point tracking of PV systemsâ€, Arab. J. SCi. Eng., Vol.40, pp.2641-2651, 2015.
B. Subudhi, R. Pradhan, “A comparative study on maximum power point tracking techniques for photovoltaic power systemsâ€. IEEE Trans. Sustain. Energy, vol.4, no.1, pp.89-98, 2013.
R. A. Reza, M. M. Hassan, S. Jamasb , “ Classification and comparison of maximum power point tracking techniques for photovoltaic system: a reviewâ€, Renew. Sustain. Energy Rev., vol.19, pp. 433-443, 2013.
T. Esram, P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniquesâ€, IEEE Trans. Energy Convers., vol.22, no.2, pp.439-449, 2007.
V. Salas, E. Olias, A. Barrado, A. Lazaro, “Review of the maximum power point tracking algorithms for stand -alone photovoltaic systemsâ€, Solar energy Materials & solar cells, vol.90, pp.1555-1578, 2006.
A. Tariq, M.S.J. Asgha, “Development of an Analog Maximum power point tracker for Photovoltaic Panelâ€, IEEE Int. Conf. Power Electronics & Drive Systems, vol.1, pp. 251-255, 2005.
T. Tafticht, K. Agbossou, M.L. Doumbia, A. Cheriti, “An improved maximum power point tracking method for photovoltaic systemsâ€, Renew. Energy, vol.33, pp.1508-1516, 2008.
D. De Cesare, D. Caputo, A. Nascetti, “Maximum power point tracker for portable photovoltaic systems with resistive-like loadâ€, Solar Energy, vol.80, pp.982-988, 2006.
O. L. Laperia, M.T. Penella, M. Gasulla, “ A new MPPT method for low power solar energy harvestingâ€, IEEE Trans. Ind. Electron., vol.57, no.9, pp.3129-3138, 2010.
P. Sathya, R. Natarajan, S. Kothari, “Analog Maximum power point tracker using constant reference voltage techniqueâ€. Int. J. Applied Eng. Research, vol.8, no.14, pp.1677-1684, 2013.
J. Ahmad, H. J. Kim, “ A voltage based Maximum power point tracker for low power and low cost photovoltaic applicationsâ€, World Academy of Sci. Eng. & Tech., vol. 60, pp.712-715, 2009.
M. H. Rashid, Power electronics: circuits, devices and Applications. 3rd edition, Pearson education, 2003.
DOI (PDF): https://doi.org/10.20508/ijrer.v5i4.2891.g6687
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4