Design and Analysis of Indium Gallium Nitride based PIN solar cell

Maithili Ganpati Kumbhare, P. Sathya

Abstract


Single junction solar cells are insufficient in absorbing wider range of solar spectrum, so multijunction solar cells are used to absorb wider range of solar wavelength and hence providing higher conversion efficiency. The work proposed in this paper is to build and simulate a PIN structure as a quad layer solar cell cascaded using tunnel junctions. For InxGa1-xN, the mole fraction values of Indium (x) are altered for the individual cell layer. The mole fraction variation leads to the change in the grading of the concentration of Indium along the depth of the structure. Variable bandgap is achieved by varying the grading, thus making the multijunction cell to be a wide energy bandgap structure. For each cell, the parameters are modeled numerically and simulated for mole fraction values (x) of 0.365, 0.525, 0.70 and 0.93. The individual cell analysis is performed and then the structure is cascaded together to form a 100 cm2 area quad junction solar cell for which the performance analysis is obtained as open circuit voltage to be 1.17 V and short circuit current density to be 3.18 mA/cm2 which accounts to a maximum conversion efficiency of 33.63% for 100Watt/cm2, under air mass AM1.5 illumination spectrum.

Full Text:

PDF

References


Akter, N. (2014). Design and simulation of Indium Gallium nitride multijunction tandem solar cells. IJRET, 3, 315-321.

Asgari, A and Khalili, K. (2011). Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell. Solar Energy Materials and Solar Cells, 95(11), 3124-3129.

Manikandan. AVM, S. Kumar and S. Prince. Performance Analysis on Conversion Efficiency of Heterojunction with Intrinsic Thin layer (HIT) Solar Cell by PC1D Simulation.

Aziz, W. J, and Ibrahim, K. (2011). Study of design the (In0. 04Ga0. 96N/SiC) solar cells. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 5(1-2), 12-15.

Brown, G. F., J. W. Ager, W. Walukiewicz and J. Wu (2010). Finite element simulations of compositionally graded InGaN solar cells. Solar Energy Materials and Solar Cells, 94(3), 478-483.

Cansizoglu, M. F., S. M. Hamad, D. P. Norman, F. Keles, E. Badraddin, T. Karabacak and H. W. Seo (2015). PiN InGaN nanorod solar cells with high short-circuit current. Applied Physics Express,8(4), 042302.

Chang, J. Y. and Kuo, Y. K. (2011). Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN pin solar cells. Electron Device Letters, IEEE, 32(7), 937-939.

Chang, J. Y. and Kuo, Y. K. (2012). Simulation of N-face InGaN-based pin solar cells. Journal of Applied Physics,112 (3), 033109.

Chang, J. Y., S. H. Yen, Y. A. Chang and Y. K. Kuo (2013). Simulation of high-efficiency GaN/InGaN pin solar cell with suppressed polarization and barrier effects. Quantum Electronics, IEEE Journal of, 49(1), 17-23.

Chang, J. Y., S. H. Yen, Y. A. Chang, B. T. Liou and Y. K. Kuo (2013). Numerical investigation of high-efficiency InGaN-based multijunction solar cell. Electron Devices, IEEE Transactions on, 60(12), 4140-4145.

Chen, Y. S., C. H. Liao, C. T. Kuo ,H. C. Tsiang and H. C. Wang (2014). Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD. Nanoscale research letters, 9(1), 1-12.

Dickerson, J. R., K., Pantzas, A.Ougazzaden and P. L.Voss (2013). Polarization-induced electric fields make robust n-GaN/i-InGaN/p-GaN solar cells. Electron Device Letters, IEEE, 34(3), 363-365.

Fabien, C. A. and Doolittle, W. A. (2014). Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells. Solar Energy Materials and Solar Cells, 130, 354-363.

Fabien, C. A., B. P. Gunning, J. J. Merola, E. A. Clinton and W. A. Doolittle (2015, June). Large-area III-nitride double-heterojunction solar cells with record-high in-content InGaN absorbing layers.In Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd (pp. 1-3). IEEE.

Fabien, C. A., M. Moseley, B. Gunning, W. A. Doolittle, A. M. Fischer, Y. O. Wei and F. A. Ponce, (2014). Simulations, Practical Limitations, and Novel Growth Technology for InGaN-Based Solar Cells. Photovoltaics, IEEE Journal of, 4(2), 601-606.

Feng, S. W., C. M. Lai, C. Y. Tsai, Y. R. Su and L. W. Tu (2013). Modelling of InGaN pn junction solar cells. Optical Materials Express, 3(10), 1777-1788.

Giannoccaro, G., and Passaro, V. M. (2014). Analysis and simulation of superlattice GaN/InGaN pin solar cells.In International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) (pp. 99-105).Springer International Publishing.

Horng, R. H., S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu and Y. C. Lu (2009). Improved conversion efficiency of GaN/InGaN thin-film solar cells. Electron Device Letters, IEEE, 30(7), 724-726.

Hsu, L. H., C. C. Lin, M. H. Tan, Y. L. Yeh, D. W. Lin, H. V. Han and H. V. Kuo (2013, June). Embedded InN dot-like structure within InGaN layers using gradient-Indium content in nitride-based solar cell.In Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th (pp. 2428-2431).IEEE.

Jani, O., P. Mahala, S. K. Behura, A. Ray and C. Dhanavantri. P-GaN/i-InGaN/n-GaN solar cell with In compositional grading, Optical and Quantum Electronics, ISSN 0306-8919.

Jeng, M. J., Y. L. Lee and L. B.Chang (2009). Temperature dependences of InxGa1− xN multiple quantum well solar cells. Journal of Physics D: Applied Physics, 42(10), 105101.

Kuo, Y. K., J. Y. Chang and Y. H. Shih (2012). Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN pin solar cell. Quantum Electronics, IEEE Journal of, 48(3), 367-374.

Kuo, Y. K., Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen and Y. H. Chen (2013). Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers. Photonics Technology Letters, IEEE,25(1), 85-87.

Seo, D. J., J. P. Shim, S. B. Choi, T. H. Seo, E. K. Suh, and D. S. Lee (2012). Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films. Optics express, 20(106), A991-A996.

Shim, J. P., S. R. Jeon, Y. K. Jeong, and D. S. Lee (2010). Improved efficiency by using transparent contact layers in InGaN-based pin solar cells. Electron Device Letters, IEEE, 31(10), 1140-1142.

Wiemer, M. W., H. B. Yuen, V. A. Sabnis, M. J. Sheldon and I. Fushman (2010).U.S. Patent Application No. 12/819,534.

http://energytransition.de/files/2015/09/2014solarcapacityaddons.png

http://cdn4.explainthatstuff.com/howsolarcellworks.png

https://upload.wikimedia.org/wikipedia/commons/4/4c/Solar_Spectrum.png

http://www.pveducation.org/sites/default/files/PVCDROM/Appendices/Images/Spectra.png

http://www.nrel.gov/continuum/spectrum/assets/images/graphic_news5_02_large.jpg




DOI (PDF): https://doi.org/10.20508/ijrer.v6i3.4317.g6900

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4